A METHOD FOR PREDICTING THE SPREAD OF EPIDEMIOLOGICAL THREATS BASED ON THE TELEGRAPH EQUATION

Автор(и)

DOI:

https://doi.org/10.30888/2663-5712.2025-33-02-112

Ключові слова:

telegraph equation, epidemic spread, epidemiological threats, mathematical modeling, wave propagation, forecasting, partial differential equations

Анотація

Mathematical modeling of epidemic dynamics plays a crucial role in understanding, predicting, and controlling the spread of infectious diseases. Traditional approaches are often based on diffusion-type equations, which assume instantaneous propagation of

Посилання

Ziyadi, N., Boulite, S., Hbid, L., & Touzeau S. (2008). Mathematical analysis of a PDE epidemiological model applied to scrapie transmission. Communications on Pure and Applied Analysis,7 (3), 659-675.

Keeling, M. J., & Danon, L. (2009). Mathematical modelling of infectious diseases. British Medical Bulletin, 92, 33–42.

Brauer, F., Castillo-Chavez, C., & Feng Z. (2019). Mathematical Models in Epidemiology. Texts in Applied Mathematics, 69. Springer.

Oliynuk A.P., Feshanych L.I., & Oliynyk Ye.A. (2020). Matematychne modeliuvannia protsesu rozvytku epidemiolohichnoi sytuatsii z urakhuvanniam osoblyvostei poshyrenia Covid-19. Metody ta prylady kontroliu, 1 (44), 138-146.

Majid, F., Deshpande, A., Ramakrishnan, S., Ehrlich, S., & Kumar M. (2021). Analysis of epidemic spread dynamics using a PDE model and COVID-19 data from Hamilton County OH USA. IFAC Paper Online 54-20, 322-327.

Molodetska, K., & Tymonina Yu. (2020). Mathematical Modeling Covid-19 Wave Structure of Distribution. CEUR Workshop Proceedings, 3rd International Conference on Informatics & Data-Driven Medicine, IDDM, 2753, 21.

Zhuang, Q., & Wang, J. (2021). A spatial epidemic model with a moving boundary. Infect Disease Model. 1, 1046–1060.

Nytrebych, Z. M., Malanchuk, O. M., Wójcik, W., & Shedreyeva I. (2018). On the modeling of wave processes in unbounded domains by problem with two-point conditions in time. Proceedings of SPIE - The International Society for Optical Engineering, 10808, Wilga, Poland. https://doi.org/10.1117/12.2501571

Nytrebych, Z, Ilkiv, V., Pukach, P., Malanchuk, O., Kohut, I., & Senyk, A. (2019). Analytical method to study a mathematical model of wave processes under two-point time conditions. Eastern-European journal of Enterprise Technologies, 1, 7 (97), 74-83.

Nytrebych, Z., Malanchuk, O., Il'kiv, V. & Pukach, P. (2017). On the solvability of two-point in time problem for PDE. Italian journal of Pure and Applied Mathematics, 38, 715-726.

Nytrebych, Z. M., Politanskyi, R. L., Malanchuk, O. M., Petryshyn, R. I., & Vistak, M. V. (2021). Simulation of Electromagnetic Oscillations in an Active Telegraph Line. Conference Proceedings, 16th International Conference on the Experience of Designing and Application of the CAD Systems, 3.1-3.5.

Nytrebych, Z., Il'kiv, V., Pukach P., & Malanchuk, O. (2018). On nontrivial solutions of homogeneous Dirichlet problem for partial differential equation in a layer. Kragujevac Journal of Mathematics, 42 (2), 193–207.

Опубліковано

2025-09-30

Як цитувати

Маланчук, О. (2025). A METHOD FOR PREDICTING THE SPREAD OF EPIDEMIOLOGICAL THREATS BASED ON THE TELEGRAPH EQUATION. SWorldJournal, 2(33-02), 211–226. https://doi.org/10.30888/2663-5712.2025-33-02-112

Номер

Розділ

Статті