HYBRID AI FRAMEWORK FOR EFFICIENT ANOMALY DETECTION IN VIDEO SURVEILLANCE DATA
DOI:
https://doi.org/10.30888/2663-5712.2025-33-01-083Keywords:
artificial intelligence, video surveillance, information systems, genetic algorithm, modeling, computer vision, video surveillance dataAbstract
Contemporary video surveillance infrastructure produces substantial data streams, posing challenges for efficient real-time processing. Current automated anomaly detection techniques frequently demand extensive computational resources and function as opaqReferences
Salman, M., Abbas, N., Rahman, S. I. U., Rehman, A., Alamri, F. S., Elyassih, A., & Saba, T. (2025). Enhancing surveillance anomaly detection with keyframes and explainable inception model. Egyptian Informatics Journal, 31, 100769. https://doi.org/10.1016/j.eij.2025.100769
Masud U, Sadiq M, Masood S, Ahmad M, Abd El-Latif AA. LW-DeepFakeNet: a lightweight time distributed CNN-LSTM network for real-time DeepFake video detection. SIViP 2023;17(8):4029–37.
Theobald O. Machine learning: make your recommender system; build your recommender system with machine learning insights. Packt Publishing Ltd 2024
Bensakhria, Ayoub. “Leveraging Real-time Edge AI-Video Analytics to Detect and Prevent Threats in Sensitive Environments.” (2023).
Skladannyi, P., Kostiuk, Y., Rzaieva, S., Bebeshko, B., & Korshun, N. (2025). Adaptive Methods for Embedding Digital Watermarks to Protect Audio and Video Images in Information Systems. https://ceur-ws.org/Vol-4016/
Bondarchuk, A., Dibrivniy, O., Grebenyk, V., & Onyshchenko, V. (2021). Motion Vector Search Algorithm for Motion Compensation in Video Encoding. In 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (pp. 345-348). IEEE. doi: 10.1109/PICST54195.2021.9772109
Buinytska, O., & Smirnova, V. (2024). Artificial intelligence technologies in research activities: overview and application. Continuing Professional Education: Theory and Practice, 81(4), 31–46. https://doi.org/10.28925/2412-0774.2024.4.2
Chemerys, O., Bushma, O., Lytvyn, O., Belotserkovsky, A., & Lukashevich, P. (2021). Network of Autonomous Units for the Complex Technological Objects Reliable Monitoring. In Reliability Engineering and Computational Intelligence (pp. 261-274). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-74556-1_16
Zhurakovskyi, B., Poltorak, V., Toliupa, S., Pliushch, O., & Platonenko, A. (2024). Processing and Analyzing Images based on a Neural Network. https://ceur-ws.org/Vol-3654/paper11.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.


