OVERVIEW OF FUNDAMENTAL MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS
DOI:
https://doi.org/10.30888/2663-5712.2025-32-01-029Keywords:
linear regression, decision trees, neural networks, forecasting models, automated learningAbstract
The article is aimed at substantiating the need to create a comprehensive educational resource for students and young professionals that systematizes knowledge about fundamental machine learning algorithms (linear regression, decision trees, basic neuralMetrics
References
Razzaq, K., & Shah, M. (2025). Machine learning and deep learning paradigms: From techniques to practical applications and research frontiers. Computers, 14(3), 93. https://doi.org/10.3390/computers14030093. Retrieved from https://www.mdpi.com/2073-431X/14/3/93 [in English].
Montejano Leija, A. B., Ruiz Beltrán, E., Orozco Mora, J. L., & Valdés Valadez, J. O. (2025). Performance of machine learning algorithms in fault diagnosis for manufacturing systems: A comparative analysis. Processes, 13(6), 1624. https://doi.org/10.3390/pr13061624. Retrieved from https://www.mdpi.com/2227-9717/13/6/1624 [in English].
Sadr, H., Nazari, M., Khodaverdian, Z., Farzan, R., Yousefzadeh-Chabok, S., Ashoobi, M. T., Hemmati, H., Hendi, A., Ashraf, A., Pedram, M. M., Hasannejad-Bibalan, M., & Yamaghani, M. R. (2025). Unveiling the potential of artificial intelligence in revolutionizing disease diagnosis and prediction: A comprehensive review of machine learning and deep learning approaches. European Journal of Medical Research, 30(1). https://doi.org/10.1186/s40001-025-02680-7. Retrieved from https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-025-02680-7 [in English].
Chen, J., Zhou, X., Yao, J., & Tang, S.-K. (2025). Application of machine learning in higher education to predict students’ performance, learning engagement and self-efficacy: A systematic literature review. Asian Education and Development Studies, 14(2), 205–240. https://doi.org/10.1108/aeds-08-2024-0166. Retrieved from https://www.sciencedirect.com/org/science/article/abs/pii/S2046316225000136 [in English].
D.S., R., Mathew, B. S., & K., S. (2025). Predictive modelling of vehicular tailpipe emissions using supervised machine learning algorithms. Sustainable Transport and Livability, 2(1). https://doi.org/10.1080/29941849.2025.2497278. Retrieved from https://www.tandfonline.com/doi/full/10.1080/29941849.2025.
[in English].
Sapkal, K. G., & Kadam, A. B. (2025). Class balancing for soil data: Predictive modeling approach for crop recommendation using machine learning algorithms. EPJ Web of Conferences, 328, 01026. https://doi.org/10.1051/epjconf/202532801026. Retrieved from https://www.epj-conferences.org/articles/epjconf/abs/2025/13/
epjconf_icetsf2025_01026/epjconf_icetsf2025_01026.html [in English].
Liang, J., Miao, H., Li, K., Tan, J., Wang, X., Luo, R., & Jiang, Y. (2025). A review of multi-agent reinforcement learning algorithms. Electronics, 14(4), 820. https://doi.org/10.3390/electronics14040820. Retrieved from https://www.mdpi.com
/2079-9292/14/4/820 [in English].
Hao, L. (2025). Application of machine learning algorithms in improving the performance of autonomous vehicles. Scientific Journal of Technology, 7(2), 118–124. https://doi.org/10.54691/532sx817. Retrieved from https://sjtechnology.org/index.php
/ojs/article/view/34 [in English].
Wan, S., Wan, F., & Dai, X. (2025). Machine learning approaches for cardiovascular disease prediction: A review. Archives of Cardiovascular Diseases. https://doi.org/10.1016/j.acvd.2025.04.055. Retrieved from https://www.science
direct.com//science/article/abs/pii/S1875213625003201 [in English].
Mohsen, S. (2025). Alzheimer’s disease detection using deep learning and machine learning: A review. Artificial Intelligence Review, 58(9). https://doi.org/10.1007/s10462-025-11258-y. Retrieved from https://link.springer.
com/article/10.1007/s10462-025-11258-y [in English].
Zhyvko, Z., & Petrukha, N. (2023). Formation and development of digital competencies in the conditions of digitalization of society. In The development of innovations and financial technology in the digital economy: Monograph (pp. 62–85). Tallinn: OÜ Scientific Center of Innovative Research. https://doi.org/10.36690/DIFTDE-2023-62-85. Retrieved from https://mono.scnchub.
com/index.php/book/catalog/view/29/69/590 [in English].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.


