CURRENT IDEAS ABOUT THE POSSIBILITY OF USING TANTALUM AND ITS DERIVATIVES IN MEDICAL PRACTICE (LITERATURE REVIEW)

Authors

DOI:

https://doi.org/10.30888/2663-5712.2023-22-02-011

Keywords:

Tantalum, Tantalum oxide, Hernioplasty, Surgical meshes

Abstract

The review of the literature presents modern ideas and achievements regarding the use of tantalum and its derivatives in medical practice. The main physical and chemical properties of tantalum, its biocompatibility and antibacterial properties are highlig

Metrics

Metrics Loading ...

References

Beddy P, Ridgway PF, Geoghegan T, et al. Inguinal hernia repair protects testicular function: A prospective study of open and laparoscopic herniorraphy. J Am Coll Surg. (2006);203:17–23.

Yang J, et al. Laparoscopic or Lichtenstein repair for recurrent inguinal hernia: a meta-analysis of randomized controlled trials. Surgical ANZ J. (2013);312–318.

Cavazzola L.T., Rosen M.J., Laparoscopic versus open inguinal hernia repair. Surgical Clinic North America. (2013); 93:1269–1279

Asarias J.R., et al. Influence of mesh materials on the expression of mediators involved in wound healing. J Invest Surg. (2011);24:87–98.

Schreinemacher M, van Barneveld K, Dikmans R et al. Coated meshes for hernia repair provide comparable intraperitoneal adhesion prevention. Surg Endosc, 27, 4202-4209 (2013).

Ecker BL, Kuo LE, Simmons KD et al. Laparoscopic versus open ventral hernia repair: longitudinal outcomes and cost analysis using statewide claims data. Surgical Endoscopy, 30, 906-915 (2016).

N. George, A.B. Nair. Porous tantalum: a new biomaterial in orthopedic surgery. Fundamental Biomaterials: Metals, Woodhead Publishing (2018), pp. 243–268.

M. Sopata, M. Sadej, J. Jakubowicz, High temperature resistance of novel tantalum-based nanocrystalline refractory compounds, J. Alloys Compd. 788 (2019) 476–484.

Wigfield C, Robertson J, Gill S, Nelson R (2003) Clinical experience with porous tantalum cervical interbody implants in a prospective randomized controlled trial. Br J Neurosurg 17(5):418–425

A.L. Overmann, C. Aparicio, et al. Orthopaedic osseointegration: implantology and future directions, J. Orthop. Res. 38 (2020) 1445–1454.

Giulio Maccauro, Francesco Muratori, Luca Raffaelli, Paolo Francesco Manicone, Carlo Fabbriciani, An overview about biomedical applications of micron and nano size tantalum, Recent Pat. Biotechnol. 3 (2009) 157–165

L. Zhang, E.-M. Haddouti, et al., Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in THP-1-derived macrophages, Mediators Inflammatory (2020)

Mardones RM, Talac R, Hanssen AD, Lewallen DG. Use of a porous tantalum revision shell in revision total hip arthroplasty. In: 72nd AAOS Annual Meeting, Washington, DC, (2005)

Bobyn JD, Stackpool GJ, et al., (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg 81B:907–914

B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Biomaterials 27 (2006) 4671–4681.

B. Dabrowski, W. Swieszkowski, D. Godlinski, K.J. Kurzydlowski, J. Biomed. Mater. Res. B Appl. Biomater. 95 (2010) 53–61.

Xian Li, Li Wang, Xiu Yu, Yang. Feng, et al., Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation, Mater. Sci. Eng. C Mater. Biol. Appl. 33 (2013) 2987–2994

Tai Kuo, Wing Chin, Cai Chien, Yoke Hsieh, Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying, Surf. Coat. Technol. 372 (2019) 399–409

Jang Ma, Yui Sun, et al., Cellular different responses to different nanotube inner diameter on surface of pure tantalum, Mater. Sci. Eng. C Mater. Biol. Appl. 109 (2020).

Giao Zhao, Shyu Li, et al., Porous tantalum scaffold fabricated by gel casting based on 3D printing and electrolysis, Mater. Lett. 239 (2019) pp 5–8.

H. Ohgushi, A.I. Caplan, J. Biomed. Mater. 48 (1999) 913–927.

Schulz H, Schimmoeller B, Pratsinis SE, Salz U, Bock T. Radiopaque dental adhesives: dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. J Dent (2008); 36: 579-587.

ISO, Biological Evaluation of Medical Devices – Part 5: Tests for in Vitro Cytotoxicity, (2009).

Yung Zhu, Si Qiao, Liu Zhou, Jiu Shi, Hung Lai, Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium, J. Biomed. Mater. Res. A. 105 (2017) 871–878.

Bencharit S, Byrd WC, Altarawneh S, Hosseini B, Leong A, Reside G, Morelli T, Offenbacher S. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res (2014); 16: 817-826.

Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res (2001);58(2):180–187

Miyazaki T, Kim HM, et al., Bioactive tantalum metal prepared by naoh treatment. J Biomed Mater Res (2000);50:35–42.

Shimko DA, Shimko VF, Sander EA, Dickson KF, Nauman EA. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater (2005);73(2):315–324.

Barrere F, van der Valk CM, Dalmeijer RA, Meijer G, van Blitterswijk CA, de Groot K, et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res (2003);66A(4):779–88

T. Kokubo, H. Kim, M. Kawashita. Novel bioactive materials with different mechanical properties. Biomaterials (2003);24(13):2161–2175.

Matsuno H, Yokoyama A, Watari F, Motohiro U, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials (2001); pp.1253–1262.

C. Nich, Y. Takakubo, et al., Macrophages-key cells in the response to wear debris from joint replacements, J. Biomed. Mater. Res. A 101 (2013) 3033–3045.

A. Ortega-Gomez, M. Perretti, O. Soehnlein, Resolution of inflammation: an integrated view, EMBO Mol. Med. 5 (2013) 661–674.

Mountziaris P.M., Spicer P.P., Kasper F.K., Mikos A.G., Harnessing and modulating inflammation in strategies for bone regeneration, Tissue Eng. B Rev. 17 (2011) 393–402

Y. Zhang, Y. Zheng, Y. Li, L. Wang, et al., Tantalum Nitride-Decorated Titanium With Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application, 10, (2015)

G.J. ter Boo, D.W. Grijpma, T.F. Moriarty, R.G. Richards, D. Eglin., Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery, Biomaterials 52 (2015) pp.113–125.

N. Horandghadim, J. Khalil-Allafi, M. Urgen, Effect of Ta2O5 content on the osseointegration and cytotoxicity behaviors in hydroxyapatite-Ta2O5 coatings applied by EPD on superelastic NiTi alloys, Mater. Sci. Eng. C Mater. Biol. Appl. 102 (2019) 683–695.

T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato, and T. Nakamura, Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid., Biomaterials, vol. 23, no. 3, pp. 827–832, (2002)

R.A. Bapat, C.P. Joshi, et al., The use of nanoparticles as biomaterials in dentistry, Drug Discov. Today 24 (2019) 85–98.

K. Joanna, G. Ewa, K.R. Dagmara, Substituted hydroxyapatites with antibacterial properties, Biomed Res. Int. (2014).

H.Huang, M.Tsai, Y. Lin, Y. Chang, Antibacterial and biological characteristics of tantalum oxide coated titanium pretreated by plasma electrolytic oxidation, Thin Solid Films 688 (2019)

Chen W., et al (2017). Study on morphology evolution of anodic tantalum oxide films in different using stages of H2SO4/HF electrolyte. Electrochimica Acta, 236, 140–153.

Gao A., Hang R., et al., (2018). «Electrochemical surface engineering of titanium-based alloys for biomedical application» Electrochimica Acta, 699–718.

T. Lertvanithphol, R.Rakreungdet, et al., (2019). Spectroscopic study on amorphous tantalum oxynitride thin films prepared by reactive gas-timing RF magnetron sputtering. Applied Surface Science, pp. 99–107.

Li Huang, et al., Antibacterial TaN-Ag Coatings on Titanium Dental Implants, Technology 205, 2010, pp. 1636–1641

Chang Wu, Liu Sun, Kiro Xu, Wu Zhong, PLGA nanoparticle-reinforced supramolecular peptide hydrogels for local delivery of multiple drugs with enhanced synergism, Soft Matter (2020)

K. Bogusz, M. Zuchora, V. Sencadas, M. Tehei, M. Lerch, N. Thorpe, A. Rosenfeld, S.X. Dou, H.K. Liu, K. Konstantinov, Synthesis of methotrexate-loaded tantalum pentoxide-poly(acrylic acid) nanoparticles for controlled drug release applications, J. Colloid Interface Sci. 538 (2019) 286–296.

A. Rodríguez-Contreras et al., Antimicrobial PHAs Coatings for Solid and Porous Tantalum Implants, 182, (2019)

A. Rodríguez-Contreras, M. Koller, et al., High Production of Poly (3- Hydroxybutyrate) from a Wild B Acillus Megaterium B Olivian Strain, 114 (2013), pp. 1378–1387

Published

2023-11-30

How to Cite

Кислов, О. (2023). CURRENT IDEAS ABOUT THE POSSIBILITY OF USING TANTALUM AND ITS DERIVATIVES IN MEDICAL PRACTICE (LITERATURE REVIEW). SWorldJournal, 2(22-02), 32–46. https://doi.org/10.30888/2663-5712.2023-22-02-011

Issue

Section

Articles